Marte: Referencias

Aquí podrás encontrar un acceso vía web a todas las referencias que aparecen en el libro «Marte»:

  • ALMA Partnership et al (2015). “The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau region*”. The Astrophysical Journal Letters, 808, L3. DOI: 10.1088/2041-8205/808/1/L3 (Ver).
  • Andert, T.; Rosenblatt, P.; Pätzold, M.; Häusler, B. et al (2010). “Precise mass determination and the nature of Phobos”. Geophysical Research Letters, 37, iss. 9, L09202. DOI: 10.1029/2009GL041829 (Ver).
  • Arvidson, R. et al (2004). “Localization and Physical Properties Experiments Conducted by Spirit at Gusev Crater”. Science, 305, iss. 5685, pp 821-824. DOI: 10.1126/science.1099922 (Ver).
  • Baccolo, G.; Delmonte, B.; Niles, P.B. et al. (2021).“Jarosite formation in deep Antarctic ice provides a window into acidic, water-limited weathering on Mars”. Nature Communications, 12, 436 (2021). DOI: 10.1038/s41467-020-20705-z (Ver).
  • Bagheri, A.; Khan, A.; Efroimsky, M. et al. (2021). “Dynamical evidence for Phobos and Deimos as remnants of a disrupted common progenitor”. Nature Astronomy, 5, pp. 539-543. DOI: 10.1038/s41550-021-01306-2 (Ver).
  • Batygin, K.; Laughlin, G. (2015). “Jupiter’s decisive role in the inner Solar System’s early evolution”. Proceedings of the National Academy of Sciences, 112, iss. 14, pp. 4214-4217. DOI: 10.1073/pnas.1423252112 (Ver).
  • Becerra, P.; Sori, M. M.; Thomas, N.; Pommerol, A.; Simioni, E.; Sutton, S. S. et al (2019). “Timescales of the climate record in the south polar ice cap of Mars”. Geophysical Research Letters, 46, pp. 7268-7277. DOI: 10.1029/2019GL083588 (Ver).
  • Borg, L. et al. (1999). «The Age of the Carbonates in Martian Meteorite ALH84001». Science, 286, iss. 5437, pp. 90-94. DOI: 10.1126/science.286.5437.90 (Ver).
  • Brasser, R. et al (2017). “The cool and distant formation of Mars”. Earth and Planetary Science Letters, 468, pp. 85-93. DOI: 10.1016/j.epsl.2017.04.005 (Ver).
  • Burkhardt, C. et al (2021). “Terrestrial planet formation from lost inner solar system material”. Science Advances, 7, iss. 52, eabj7601. DOI: 10.1126/sciadv.abj7601 (Ver).
  • Byrne, S. et al (2009). “Distribution of Mid-Latitude Ground Ice on Mars from New Impact Craters”. Science, 325, iss. 5948, pp. 1674-1676. DOI: 10.1126/science.1175307 (Ver).
  • Campbell, W.W. (1894). “Concerning an Atmosphere on Mars”. Publications of the Astronomical Society of the Pacific, 6, iss. 38, pp. 273-283. DOI: 10.1086/120876 (Ver).
  • Carr, M.; Wead III, J. (2010). “Geologic history of Mars”. Earth and Planetary Science Letters, 294, iss. 3-4, pp. 185-203. DOI: 10.1016/j.epsl.2009.06.042 (Ver).
  • Ciyuan, L. (1988). “Ancient Chinese observations of planetary positions and a table of planetary occultations”. Earth, Moon and Planets, 40, pp. 111-117. DOI: 10.1007/BF00056020 (Ver).
  • Dawes, W.R. (1865). “Physical Observations of Mars Near the Opposition in 1864”. Astronomical Register, 3, pp. 220-223 (Ver).
  • Dunlap, D.W. (Oct. 1, 2015). “Life on Mars? You Read It Here First”. The New York Times (Ver).
  • Eigenbrode, J. et al (2018). “Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars”. Science, 360, iss. 6393, pp.1096-1101. DOI: 10.1126/science.aas9185 (Ver).
  • Evans, J.E.; Maunder, E.W. (1903). “Experiments as to the actuality of the «Canals» observed on Mars”. Monthly Notices of the Royal Astronomical Society, 63, pp. 488-499. DOI: 10.1093/mnras/63.8.488 (Ver).
  • Fernández-Martínez, M.A. et al (2021). “Geomicrobiological Heterogeneity of Lithic Habitats in the Extreme Environment of Antarctic Nunataks: A Potential Early Mars Analog”. Frontiers in Microbiology, 12, DOI: 10.3389/fmicb.2021.670982 (Ver).
  • Finocchiaro, M. (2007). “West Chester University – History of Astronomy; Lecture notes: Texts from The Galileo Affair: A Documentary History”. West Chester University, ESS 362/562.
  • Formisano, V. et al (2004). “Detection of Methane in the Atmosphere of Mars”. Science, 306, iss. 5702, pp. 1758-1761. DOI: 10.1126/science.1101732 (Ver).
  • García-Román, R. (2020). “Astronomía en el antiguo Egipto”. Analemma, 9, pp. 33-38 (Ver).
  • Gil-Lozano, C.; Davila, A.; Losa-Adams, E. et al (2017). “Quantifying Fenton reaction pathways driven by self-generated H2O2 on pyrite surfaces”. Scientific Reports, 7, 43703. DOI: 10.1038/srep43703 (Ver).
  • Giuranna, M., Viscardy, S., Daerden, F. et al (2019). “Independent confirmation of a methane spike on Mars and a source region east of Gale Crater”. Nature Geoscience, 12, pp. 326-332. DOI: 10.1038/s41561-019-0331-9 (Ver).
  • Grima, C. et al (2022). “The Basal Detectability of an Ice-Covered Mars by MARSIS”. Geophysical Research Letters, 49, iss. 2, e2021GL096518. DOI: 10.1029/2021GL096518 (Ver).
  • Grocholski, B.; Smith, K. (2018). “Measuring martian organics and methane”. Science, 360, iss. 6393, pp.1082-1084. DOI: 10.1126/science.360.6393.1082-b.
  • Grotzinger, J. et al (2014). “A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars”. Science, 343, iss. 6169. DOI: 10.1126/science.1242777 (Ver).
  • Grotzinger, J. et al (2015). “Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars”. Science, 350, iss. 6257. DOI: 10.1126/science.aac7575 (Ver).
  • Heath, T.H. (1931). “A history of Greek mathematics 1” (Reed. de 1981). Oxford. ISBN: 0486-24073-8.
  • Herschel, W. (1784). “XIX. On the remarkable appearances at the polar regions of the planet Mars, and its spheroidical figure; with a few hints relating to its real diameter and atmosphere”. Philosophical Transactions of the Royal Society of London, 74, pp. 233-273. DOI: 10.1098/rstl.1784.0020.
  • Hesselbrock, A.; Minton, D. (2017). “An ongoing satellite–ring cycle of Mars and the origins of Phobos and Deimos”. Nature Geoscience, 10, pp. 266-269. DOI: 10.1038/ngeo2916.
  • Hobiger, M.; Hallo, M.; Schmelzbach, C. et al (2021). “The shallow structure of Mars at the InSight landing site from inversion of ambient vibrations”. Nature Communications, 12, 6756. DOI: 10.1038/s41467-021-26957-7.
  • House, C. et al (2022). “Depleted carbon isotope compositions observed at Gale crater, Mars”. Proceedings of the National Academy of Sciences, 119, iss. 4, e2115651119. DOI: 10.1073/pnas.2115651119
  • Hynek, B; Osterloo, M.; Kierein-Young, K. (2015). “Late-stage formation of Martian chloride salts through ponding and evaporation”. Geology, 43, iss. 9, pp. 787-790. DOI: 10.1130/G36895.1.
  • Johnson, C.; Mittelholz, A.; Langlais, B. et al. (2020). “Crustal and time-varying magnetic fields at the InSight landing site on Mars”. Nature Geoscience, 13, 199-204. DOI: 10.1038/s41561-020-0537-x (Ver).
  • Kaplan, L.; Münch, G.; Spinrad, H. (1964). “An Analysis of the Spectrum of Mars”. The Astrophysical Journal, 139, iss. 1, pp. 1-15. DOI: 10.1086/147736 (Ver).
  • Kaplan, L.; Connes, J.; Connes, P. (1969). “Carbon Monoxide in the Martian Atmosphere”. The Astrophysical Journal, 157: L187. DOI: 10.1086/180416 (Ver).
  • Khan, A. et al (2021). “Upper mantle structure of Mars from InSight seismic data”. Science, 373, iss. 6553, pp. 434-438. DOI: 10.1126/science.abf2966 (Ver).
  • Knapmeyer-Endrun, B. et al (2021). “Thickness and structure of the martian crust from InSight seismic data”. Science, 373, iss. 6553, pp. 438-443. DOI: 10.1126/science.abf8966 (Ver).
  • Knoll, A. et al (2005). “An astrobiological perspective on Meridiani Planum”. Earth and Planetary Science Letters, 240, iss. 1, pp. 179-189. DOI: 10.1016/j.epsl.2005.09.045 (Ver).
  • Lauro, S.E.; Pettinelli, E.; Caprarelli, G. et al (2021). “Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data”. Nature Astronomy, 5, pp. 63-70. DOI: 10.1038/s41550-020-1200-6 (Ver).
  • Leone, G. (2014). “A network of lava tubes as the origin of Labyrinthus Noctis and Valles Marineris on Mars”. Journal of Volcanology and Geothermal Research, 277, iss. 1, pp. 1-8. DOI: 10.1016/j.jvolgeores.2014.01.011 (Ver).
  • Leshin, L. et al (2013). “Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover”. Science, 341, iss. 6153. DOI: 10.1126/science.1238937 (Ver).
  • Lissauer, J.; Fabrycky, D.; Ford, E. et al (2011). “A closely packed system of low-mass, low-density planets transiting Kepler-11”. Nature, 470, pp. 53-58. DOI: 10.1038/nature09760 (Ver).
  • Lodders, K.; Fegley, Jr. B. (1998). “The planetary scientist’s companion”. New York: Oxford University Press. ISBN: 978-1423759836 (Ver).
  • Mahaffi, P. et al (2013). “Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover”. Science, 341, iss. 6143, pp. 263-266. DOI: 10.1126/science.1237966 (Ver).
  • Mangold, N. et al (2021). “Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars”. Science. DOI: 10.1126/science.abl4051 (Ver).
  • Menzel, D.H. (1926). “The Atmosphere of Mars”. The Astrophysical Journal, 61, iss. 48. DOI: 10.1086/142949 (Ver).
  • Ming, D. et al. (2006). “Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars”. Journal of Geophysical Research: Planets, 111, iss. E2. DOI: 10.1029/2005JE002560 (Ver).
  • Ming, D. et al (2013). “Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars”. Science, 343, iss. 6169. DOI: 10.1126/science.1245267 (Ver).
  • Mischna, M.A.; Shirley. J.H. (2017). “Numerical Modeling of Orbit-Spin Coupling Accelerations in a Mars General Circulation Model: Implications for Global Dust Storm Activity”. Planetary and Space Science, 141, pp. 45-72. DOI: 10.1016/j.pss.2017.04.003 (Ver).
  • Mitrofanov, I. et al (2022). “The evidence for unusually high hydrogen abundances in the central part of Valles Marineris on Mars”. Icarus, 374, 114805. DOI: 10.1016/j.icarus.2021.114805 (Ver).
  • Mommsen, T (1864). “The History of Rome, Vol. I: The Period Anterior to the Abolition of the Monarchy”. Dickson, William Purdie (ed).
  • Murray, J.; Iliffe, J.; Muller, J.-P. et al (2006). “New Evidence on the Origin of Phobos’ Parallel Grooves from HRSC Mars Express”. 37th Annual Lunar and Planetary Science Conference (Ver).
  • Ohnaka, H. et al (2013). “High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER”. Astronomy & Astrophysics, 555-A24. DOI: 10.1051/0004-6361/201321063 (Ver).
  • Ojha, L. et al (2014). “HiRISE observations of Recurring Slope Lineae (RSL) during southern summer on Mars”. Icarus, 231, pp. 365-376. DOI: 10.1016/j.icarus.2013.12.021 (Ver).
  • Ojha, L.; Wilhelm, M.; Murchie, S. et al (2015). “Spectral evidence for hydrated salts in recurring slope lineae on Mars”. Nature Geoscience, 8, pp. 829-832. DOI: 10.1038/ngeo2546 (Ver).
  • Orosei, R. et al (2018). “Radar evidence of subglacial liquid water on Mars”. Science, 361, iss. 6401, pp. 490-493. DOI: 10.1126/science.aar7268 (Ver).
  • Pérez-Verde, A. (2012). “Río Tinto: Marte en España”. Astronomía Magazine, 157-158, pp. 32-37.
  • Pérez-Verde, A. (2017). “Marte: persiguiendo el agua en el planeta rojo”. Universidad Internacional de Valencia, dossier de investigación (Ver).
  • Pérez-Verde, A. (2021). “Actividades en clase con el clima de Marte, gracias a los instrumentos españoles”. Nadir, 49, pp. 14-18 (Ver).
  • Pérez-Verde, A. (2022). “Por qué mirábamos las estrellas”. Cálamo (Colección “El Arca de Darwin”’). ISBN: 978-84-16742-31-8 (Ver).
  • Philpotts, A.R.; Ague, J.J. (2009). “Principles of igneous and metamorphic petrology” (2nd ed.). Cambridge, UK: Cambridge University Press. ISBN: 9780521880060 (Ver).
  • Pla-García, J. et al (2011). “The meteorology of Gale crater as determined from rover environmental monitoring station observations and numerical modeling. Part I: Comparison of model simulations with observations”. Icarus, 280, pp. 103-113. DOI: 10.1016/j.icarus.2016.03.013 (Ver).
  • Pla-Garcia, J.; Rafkin, S.; Karatekin, S.; Gloesener, E. (2019). “Comparing MSL Curiosity Rover TLS-SAM Methane Measurements With Mars Regional Atmospheric Modeling System Atmospheric Transport Experiments”. Journal of Geophysical Research: Planets, 124, iss. 8, pp. 2141-2167. DOI: 10.1029/2018JE005824 (Ver).
  • Pla-García, J., Rafkin, S.C.R., Martinez, G.M. et al (2020). “Meteorological Predictions for Mars 2020 Perseverance Rover Landing Site at Jezero Crater”. Space Science Reviews, 216, 148. DOI: 10.1007/s11214-020-00763-x (Ver).
  • Ramsley, K.; Head, J. (2019). “Origin of Phobos grooves: Testing the Stickney Crater ejecta model”. Planetary and Space Science, 165, pp. 137-147. DOI: 10.1016/j.pss.2018.11.004 (Ver).
  • Rapin, W. et al (2019). “An interval of high salinity in ancient Gale crater lake on Mars”. Nature Geoscience, 12, pp. 889-895. DOI: 10.1038/s41561-019-0458-8 (Ver).
  • Reed, S. (2006). “Search for the Universe’s Hidden Dimensions”. BBC Sky at Night, Apr. 2006, pp. 24-30 (Ver).
  • Richardson, M.A.; Toigo A.D.; Newman, C.E. (2007). “PlanetWRF: A general purpose, local to global numerical model for planetary atmospheric and climate dynamics”. Journal of Geophysical Research, 112, E09001. DOI: 10.1020/2006JE002825 (Ver).
  • Rieder, R. et al (1997). “Determination of the chemical composition of Martian soil and rocks: The alpha proton X ray spectrometer”. Journal of Geophysical Research: Planets, 102, iss. E2, pp. 4027-4044. DOI: 10.1029/96JE03918 (Ver).
  • Salese, F. et al (2019). “Geological Evidence of Planet-Wide Groundwater System on Mars”. Journal of Geophysical Research: Planets, 124, iss. 2, pp. 374-395. DOI: 10.1029/2018JE005802 (Ver).
  • Schiaparelli, G. (1867). “Note e riflessioni intorno alla teoria astronomica delle stelle cadenti”. Firenze Stamperia Reale (Ver).
  • Schofield, J.T. et al (1997). “The Mars Pathfinder Atmospheric Structure Investigation/Meteorology (ASI/MET) Experiment”. Science, 278, iss. 5344, pp. 1752-1758. DOI: 10.1126/science.278.5344.1752 (Ver).
  • Smith, H. (2021). “NASA’s First Weather Report from Jezero Crater on Mars”. NASA’s Game Changing Development Program (Ver).
  • Solís, C.; Sellés, M. (2005). “Historia de la ciencia”. Espasa Calpe. ISBN: 9788467017410 (Ver).
  • Spiga, A. (2011). “Elements of comparison between Martian and terrestrial mesoscale meteorological phenomena: Katabatic winds and boundary layer convection”. Planetary and Space Science, 59, iss. 10, pp. 915-922. DOI: 10.1016/j.pss.2010.04.025 (Ver).
  • Squyres, S. et al (2004). “The Opportunity Rover’s Athena Science Investigation at Meridiani Planum, Mars”. Science, 306, iss. 5702, pp. 1698-1703. DOI: 10.1126/science.1106171 (Ver).
  • Stäler, S.C. et al (2021). “Seismic detection of the martian core”. Science, 373, iss. 6553, pp. 443-448. DOI: 10.1126/science.abi7730 (Ver).
  • Stcherbinine, A. et al (2020). “Martian Water Ice Clouds During the 2018 Global Dust Storm as Observed by the ACS-MIR Channel Onboard the Trace Gas Orbiter”. Journal of Geophysical Research: Planets, 125, iss. 3. DOI: 10.1029/2019JE006300 (Ver).
  • Steele, A. et al (2022). “Organic synthesis associated with serpentinization and carbonation on early Mars”. Science, 375, iss. 6577, pp. 172-177. DOI: 10.1126/science.abg7905 (Ver).
  • Torregrosa, D. (2018). “Del mito al laboratorio”. Cálamo (Colección “El Arca de Darwin”’). ISBN: 978-84-16742-11-0 (Ver).
  • Trainer, M.; Wong, M.; McConnochie, T.; Franz, H.; Atreya, S.; Conrad, P. et al (2019). “Seasonal Variations in Atmospheric Composition as Measured in Gale Crater, Mars”. Journal of Geophysical Research: Planets, 124, iss. 11, pp. 3000-3024. DOI: 10.1029/2019JE006175 (Ver).
  • Vaniman, D. et al (2013). “Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars”. Science, 343, iss. 6169. DOI: 10.1126/science.1243480 (Ver).
  • Vaquerizo Gallego, J.A. (2020). “Marte y el enigma de la vida”. Los libros de la Catarata (Colección “Qué sabemos de”). ISBN: 978-84-1352-084-1 (Ver).
  • Wallace, A.R. (1907). “Is Mars Habitable? A Critical Examination of Professor Percival Lowell’s Book ‘Mars and its Canals,’ with an Alternative Explanation”. Macmillan and Co. (Ver).
  • Webster, C.R. et al (2013). “Isotope Ratios of H, C, and O in CO2 and H2O of the Martian Atmosphere”. Science, 341, iss. 6143, pp. 260-263. DOI: 10.1126/science.1237961 (Ver).
  • Webster, C.R. et al (2018). “Background Levels of Methane in Mars’ Atmosphere Show Strong Seasonal Variations”. Science, 360, iss. 6393, pp.1093-1096. DOI: 10.1126/science.aaq0131 (Ver).
  • Webster, C.R. et al (2021). “Day-night differences in Mars methane suggest nighttime containment at Gale crater”. Astronomy & Astrophysics, 650, A166. DOI: 10.1051/0004-6361/202040030 (Ver).
  • de Wijs, G.; Kresse, G.; Vočadlo, L. et al (1998). “The viscosity of liquid iron at the physical conditions of the Earth’s core”. Nature, 392, pp. 805-807. DOI: 10.1038/33905 (Ver).
  • Whiteway, J. et al (2009). “Mars Water-Ice Clouds and Precipitation”. Science, 325, iss. 5936, pp. 68-70. DOI: 10.1126/science.1172344 (Ver).
  • Wright, W.H. (1925). “Photographs of Mars made with light of different colors”. Lick Observatory Bulletin, 12, pp. 48-61. DOI: 10.5479/ADS/bib/1925LicOB.12.48W (Ver).
  • Wright, W.H. (1947). “Biographical memoir of William Wallace Campbell”. National Academy of Sciences, 25, iss. 3 (Ver).
  • Yin, A. (2012). “Structural analysis of the Valles Marineris fault zone: Possible evidence for large-scale strike-slip faulting on Mars”. Lithosphere, 4, iss. 4, pp. 286-330. DOI: 10.1130/L192.1 (Ver).